Semantic annotation of text documents based on hierarchical radial basis neural network

Authors

  • Евгений Владимирович Бодянский Кафедра искусственного интеллекта Харьковский национальный университет радиоэлектроники, Ukraine
  • Ольга Васильевна Шубкина Кафедра искусственного интеллекта Харьковский национальный университет радиоэлектроники, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2010.3262

Keywords:

semantic annotation, radial basis function neural network, multi-layered architecture

Abstract

The hierarchical radial basis function neural network with a multi-layered architecture is proposed. This neural network is used for extracting knowledge from textual sources with the maximum number of relevant attributes for each object and assigns it to the selected class of ontology.

Author Biographies

Евгений Владимирович Бодянский, Кафедра искусственного интеллекта Харьковский национальный университет радиоэлектроники

Доктор технических наук, профессор

Ольга Васильевна Шубкина, Кафедра искусственного интеллекта Харьковский национальный университет радиоэлектроники

Аспирант

References

  1. Uren V. Semantic annotation for knowledge management: Requirements and a survey of the state of the art / V. Uren, Ph. Cimiano, J. Iria, S. Handschuh, M. Vargas-Vera, E. Motta, F. Ciravegna // Web Semantics: Science, Services and Agents on the World Wide Web. – 2006. – V. 4 – N. 1. – P. 14–28.
  2. Chen H. Knowledge Management Systems: A Text Mining Perspective / H. Chen // Arisona: Knowledge Computing Corporation. – 2004. – 50 p.
  3. Хорошевский В.Ф. Пространства знаний в сети Интернет и Semantic Web / В.Ф. Хорошевский // Искусственный интеллект и принятие решений. – 2008. – 1. – C. 80–97.
  4. Al-Khalifa H. The evolution of metadata from standards to semantics in E-learning applications / H. Al-Khalifa, H. Davis // Proceedings of the 17th conference on Hypertext and hypermedia table of contents. – Odense, Denmark. – 2006. – P. 69–72.
  5. Resource Description Framework: Overview. [Электронный ресурс] // Режим доступа: http://www.w3.org/RDF/.
  6. The Dublin Core Metadata Initiative. [Электронный ресурс] // Режим доступа: http://dublincore.org/.
  7. FOAF project. [Электронный ресурс] // Режим доступа: http://www.foaf-project.org/.
  8. Simple Knowledge Organization System: Intoduction. [Электронный ресурс] // Режим доступа: http://www.w3.org/2004/02/skos/intro.
  9. Hearst M. Automatic acquisition of hyponyms from large text corpora / M. Hearst // Proceedings of the 14th conference on Computational linguistics. –1992. – V. 2. – P. 539–545.
  10. Giles L. Automatic document metadata extraction using Support Vector Machines / L. Giles, E. Manavoglu, H. Zha // Proceedings of the 2003 Joint Conference on Digital Libraries. – 2003. – P. 37–48.
  11. Wu Yu-Ch. Extracting named entities using Support Vector Machines / Yu-Ch. Wu, T.-K. Fan, Y.-Sh. Lee, Sh.-J. Yen // Lecture Notes in Computer Science. – 2006. – 3886. – P. 91–103.
  12. Xu K. Self-teaching semantic annotation method for knowledge discovery from text / K. Xu, S. Liao, R. Lau, L. Liao, H. Tang // HICSS ‘09. – 2009. – P. 1–7.
  13. Seymore K. Learning for information extraction learning Hidden Markov Model structure for information extraction / K. Seymore, A. McCallum, R. Rosenfeld // AAAI’99 Workshop on Machine Learning. – 1999. – P. 37–42.
  14. McCallum A. Maximum entropy Markov Models for information extraction and segmentation / A. McCallum, D. Freitag, F. Pereira // 17th International Conference on Machine Learning. – 2000. – P. 591 – 598.
  15. Grilheres B. A platform for semantic annotations and ontology population using conditional random fields / B. Grilheres, S. Canu, C. Beauce, S. Brunessaux // The 2005 IEEE/WIC/ACM International Conference. – 2005. – P. 790–793.
  16. Tang J. Tree-structured conditional random fields for semantic annotation / J. Tang, M. Hong, J. Li, B. Liang // Lecture Notes in Computer Science. – 2006. – 4273. – P. 640–653.
  17. Salton G. Term-weighting approaches in automatic text retrieval / G. Salton, C. Buckley // Information Processing & Management. – 1988. – 24(5). – P. 513–523.
  18. Chifu E. St. A neural model for unsupervised named entity classification / E. St. Chifu, V. R. Chifu. // The IEEE International Conference on Intelligent Agents, Web Technologies and Internet Commerce. – 2008. – P.1073–1078.
  19. Todorov K. Mining concept similarities for heterogeneous ontologies / K. Todorov, P. Geibel, K.-U. K hnberger // Lecture Notes in Computer Science. – 2010. – 6171. – P. 86-100.
  20. Habib M. Addressing scalability issues of named entity recognition using Multi-class Support Vector Machines/ M. Habib // World Academy of Science, Engineering and Technology. – 2008. – 37. – P. 69-78.
  21. Бодянский Е.В. Искусственные нейронные сети: архитектуры, обучение, применения / Бодянский Е.В., Руденко О.Г. – Харьков: ТЕЛЕТЕХ, 2004. – 372 с.
  22. Haykin S. Neural Networks. A Comprehensive Foundation / S. Haykin – Upper Saddle River, N. J.: Prentice Hall, Inc, 1999. – 842 p.
  23. Shynk J.J. Performance surfaces of a single-layer perceptron / J.J. Shynk. – IEEE Trans. on Neural Networks. – 1990. – 1. – P.268–274.
  24. Бодянский Е.В. Нейро-фаззи сети Петри в задачах моделирования сложных систем / Бодянский Е.В., Кучеренко Е.И., Михалев А.И. – Днепропетровск: Системные технологии, 2005. – 311 с.
  25. Dvoretzky A. On stochastic approximation / A. Dvoretzky // Proc. 3-rd Berkley Symp. Math. Statistics and Probability. – 1956. – 1. – P. 39–55.
  26. Goodwin G.C. A globally convergent adaptive predictor / G.C. Goodwin, P.J. Ramadge, P.E. Caines // Automatica. – 1981. – 1. – Р. 135–140.

Published

2010-11-10

How to Cite

Бодянский, Е. В., & Шубкина, О. В. (2010). Semantic annotation of text documents based on hierarchical radial basis neural network. Eastern-European Journal of Enterprise Technologies, 6(3(48), 72–77. https://doi.org/10.15587/1729-4061.2010.3262

Issue

Section

Control systems